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Optimal Control of a Librating Electrodynamic Tether
Performing a Multirevolution Orbit Change
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Satellites that use low-thrust propulsion systems for maneuvering, although efficient, can take a long time to
complete significant orbit changes. Determining the nonlinear optimal controls for such multirevolution maneuvers
using the instantaneous orbital state dynamics can be riddled with numerical errors and are often subject to long
computation times, due to the large number of discretization nodes required by the optimization algorithm. An
approach to optimal control of an electrodynamic tether is examined using averaged orbital state dynamics as
constraints instead of instantaneous dynamic constraints. A mean-square libration state is introduced in the dynamic
model that captures the average of the out-of-plane libration of the tether. A sample long-term optimal orbit change
maneuver of a librating electrodynamic tether subject to atmospheric drag is investigated. The method of averaging
is employed to transform the optimal control problem from the time domain into Fourier space, in which the complex
problem is significantly reduced to a Zermelo-type problem that is solved using a pseudospectral method. To validate
the dynamic model of averaged states, the instantaneous states are propagated from the initial conditions using the

resulting optimal controls.

Nomenclature

effective cross-sectional area of the tether system
average semimajor axis

local Earth magnetic flux density vector

ballistic coefficient for the ith body

resultant atmospheric drag force

average eccentricity

ratio of maximum Lorenz torque to gravity gradient
torque, scaling parameter

resultant Lorenz force on the electrodynamic tether
path constraint

control current

maximum allowable root-mean-square current
average inclination

tether length

system mass

effective reduced mass

orbital mean motion

radial distance with respect to Earth’s center
control vector of Fourier coefficients

orbital velocity

system state vector of averaged orbital elements and
mean-square libration

mean-square out-of-plane libration state

flight-path angle

Earth magnetic dipole moment

out-of-plane libration angle

Earth’s gravitational parameter

true anomaly
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atmospheric density
tether orientation vector
average argument of perigee
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I. Introduction

ATELLITES that use electrodynamic tethers (EDTs) for orbital
maneuvering have great advantages over propellant-based
systems because the Earth’s ionosphere and magnetic field provide
the necessary ingredients for propulsion. By running a current
through a long straight wire in a magnetic field, a Lorenz force is
generated, which propels the wire in a direction perpendicular to both
the local magnetic field vector and the current in the wire. The Earth
itself provides the magnetic field, and the ionosphere serves as both a
ready source of electrons and also completes the circuit necessary for
the flow of current in the EDT wire. A good overview of the concept
along with the associated challenges and history is provided in [1].
The two-ball EDT model used in this paper is depicted in Fig. 1. The
force magnitude depends on the current, length of wire, and the wire
orientation with respect to the local magnetic field. A longer tether
yields a greater thrusting force; however, it comes at the expense of
greater drag at lower altitudes. Additionally, a tether will tend to
librate about the center of mass as the gravity gradient torque
competes with the torques induced by both atmospheric drag and the
Lorenz force. An uncontrolled EDT with a constant direct current
running through it will eventually go unstable, as demonstrated by
Pelaez et al. [2]. However, by controlling the Lorenz force via the
current in the wire through variable resistance, the satellite system
could maneuver to new orbits while maintaining stable libration
without propellant, albeit at a slower rate than chemical maneuvering
rockets or kick motors. Because of the slow orbital changes afforded
by the low thrust available, an orbit transfer requires a long time to
reach a desired orbit; thus, a method of control is needed to achieve
optimal trajectories that span many orbital revolutions.
Determining optimal controls for satellites that maneuver over
the course of many orbital revolutions can be challenging and
computationally intensive when states and controls are considered
on short time scales of a few orbital revolutions. Williams [3]
demonstrated a method of determining EDT optimal control using
instantaneous nonlinear perturbation equations of motion and
libration as dynamic constraints and solved an optimal control
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Fig. 1 Electrodynamic tether force model.

problem by direct transcription using nonlinear programming
software. This method is shown to be effective in determining
controls that execute a small short-term orbit maneuver using an
electrodynamic tether for thrust with a dynamic model that includes
libration. However, the solver required hundreds of collocation node
points to capture all the small state variations that occur in a single
day of maneuvering. The enormous number of discretization nodes
required to determine optimal controls for a larger orbit transfer
spanning months would be extremely susceptible to round-off errors
and long computation times. In many low-thrust maneuvering
situations, the instantaneous orbit state will vary only slightly from an
average state, which tends to change only slowly, taking long periods
of time (i.e., many orbital revolutions) to change significantly.
Carroll [4] introduced a way to express long-term EDT behavior for
given control strategies that were further explored by Tragesser and
San [5], who applied the method of averaging to demonstrate
nonoptimal control of the average states. This method has the
advantage of avoiding the computational burden associated with
controlling the rapidly changing instantaneous states, thereby
enabling the determination of control strategies for larger orbit
transfers spanning longer time periods. The results, however, are
not optimal and libration is not considered. A method combining
the advantages of both approaches is presented in [6] in which the
constraints of a given optimal control problem are transformed into a
Fourier space by modeling the averaged orbital state dynamics
instead of the instantaneous dynamics. It was assumed, however, that
the tether was nadir-pointing and nonlibrating, but in reality, we
would need to account for the librations of the long tether, both to
manage stability and to establish a higher-fidelity dynamic model.
The subject of this paper is to expand the model introduced in [6] to
include libration dynamics for large-time-scale maneuvers by
applying the method of averaging to optimal control theory. The
diagram in Fig. 2 shows how some complex periodic optimal control
problems (OCPs) may be significantly reduced to Zermelo-type#
problems [7] using the method of averaging to transform constraints
into a Fourier space. This transformation eliminates all dependence
on variables that change rapidly with time (i.e., vary within a single
revolution), and the resulting averaged states and controls will only
depend on variables that change slowly over many revolutions.
It should be noted that because this method controls a system’s time-
averaged states, the resulting optimal trajectory must cover many
revolutions for averaging to be effective. For multirevolution optimal
control problems that cannot take advantage of averaging, a more
general method such as the approach introduced by Ross et al. [8]
may be more suitable if round-off errors due to iterative propagation
steps are considered insignificant. The method presented here,
however, contains no propagation steps and uses very few collo-
cation node points for optimization and is thus less susceptible to
numerical round-off errors and solves the OCP in a single step
without iteration. The remainder of this paper will describe the

In 1923, German mathematician Ernst Zermelo posed the problem of
navigating a boat from point A to point B in minimum time, factoring in wind
and current. The solution is not a straight-line path.
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Fig. 2 Optimal control in Fourier space.

construction and solution of an EDT optimal control problem in a
Fourier space using the method of averaging and a dynamic model
that includes libration.

II. Dynamic Model

The dynamic model is addressed in two parts: one part that
describes the average orbital motion and one that describes the
libration motion. The objective is to achieve a model that is
independent of the rapidly varying effects that occur only over short
time intervals and captures only the slow, secular behavior of the
system over a long time. With such a model, we can impose a
dynamic constraint in a general OCP form such that the averaged
states are constrained or controlled throughout the maneuver,
yielding an optimal trajectory to a desired end state.

A. Orbital Motion

The Lorenz force generated along a wire channeling an electric
current is given by

F=ILxB

where I represents tether current (the control), B represents the
Earth’s local magnetic flux density vector, and L is the tether length
vector pointing in the direction from the upper end mass m, to the
lower end mass m;. The tether geometry and current direction that
yield a positive transverse thrust are shown in Fig. 1. The control
current is assumed to be periodic, because periodic control is the only
control that will yield secular changes in the averaged states. This
control is a function of slowly changing Fourier control coefficients
(varying only on a large time scale T') expressed using a basis of
relevant harmonics of a Fourier series:

I'=1Iu(T),v]=1,¥" (v)u(T)

where I, represents the maximum allowable rms current, and the
controller is defined using the relevant harmonics of the Fourier
series. The controller consists of Fourier coefficients and a basis set,
which is defined using the dc component and first two harmonics of a
Fourier series for the discussion in this paper:

u (T) = [uy, uy, us, ug, Ms]T

W(v) =1, cos v, sin v, cos 2v, sin 2v]”

Had the model included effects and perturbations that change with
respect to multiple time scales, additional control terms and basis sets
could have been included to capture additional frequencies [9], but
this set is sufficient for the model chosen here. The local magnetic
flux density for an Earth-orbiting satellite is modeled as

y —2sin(w + v) sin i B,
B =% cos(w+v)sini |[=| B,
r .
cos i B
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where y,, represents the Earth’s magnetic dipole moment; i is the
inclination relative to the magnetic equator; and B,, B,, and B,
represent the magnetic flux density vector components in the radial,
transverse, and orbit normal directions, respectively (i.e., ¢, €, and
e, directions in Fig. 3). For a near-circular orbit, the drag force on
the entire tether system is given by

l
D= B*,o(r)—et

where p(r) represents the average air density at radial distance r,
and B* is the average ballistic coefficient of the entire tether. Here, the
ballistic coefficient is defined as
C,A
B =" (1)
m

where Cy is the average coefficient of drag, A is the average cross-
sectional area perpendicular to the velocity vector, and m is the
system mass. The averaged orbital state dynamics of the EDT to
order ¢? are derived in [6] and are repeated here for convenience:

d
d—cz ~ 2Cacosi(u; + ue) — 2D

dh k h hk?
fhcen (2o (o (o (1)
2
()2 ()
4 a
dkwc . k k Wk
a3 (O (Gor (G-32)
h (W2 —=Kk)h D a
# (g e (e
di A k2 — h? hk
d—;m —Csmz[(i)ul + (4—62)u4 — (z—ez)us] 2)

where C = Ly,,/nma* represents the thrust per unit current and the
drag rate is D = B*up(a)/2na. The states used here are averaged
orbital parameters, not instantaneous, expressed using a partial
equinoctial set, where h=esinw and k=ecosw to avoid
singularity when considering circular orbits. The dynamics of these
average states do not contain a fast time variable such as v; thus, the
average states only vary slowly over long time scales. These
equations assume a nonlibrating nadir-pointing tether, and so to
achieve accurate controls and maintain libration stability, we need to
include libration dynamics into the model.

B. Libration

The instantaneous libration dynamic equations of motion are
derived in the Appendix and may be written for the in-plane and out-
of-plane librations, respectively, as

9:—v+2(9+v)¢tan¢ 3—smt9cos0—i—~ 2]

mL*cos’¢ ®)

= —|:(é + )2+ 3%00529] sin ¢ cos ¢ + ~Q—¢2 )
r mL

where v is the true anomaly, m is the effective reduced mass of the
system that accounts for the mass distribution, and 6 and ¢ are the
in- and out-of-plane libration angles, respectively. Dots indicate
differentiation with respect to clock time ¢ [i.e., (") = d()/dt]. The
scalars Qg and Q, are the generalized forces affecting the in- and out-
of-plane libration angles, respectively, due to a combination of
electrodynamic Lorenz and aerodynamic drag forces. It has been
shown that an unperturbed inert (unpowered) tether in a circular orbit
librates in and out of the orbital plane about an equilibrium point

with marginal stability (see [10], for example). An uncontrolled EDT
with constant dc running through it, however, will go unstable over
time [2]. We desire to establish a periodic controller that will enable
an optimal orbital transfer while simultaneously driving libration
amplitude to a desired end state within specified bounds.
Unfortunately, straightforward averaging of the derivative of the
libration angle as we did with the orbital state derivative would yield
zero for a tether librating about nadir. Control cannot be achieved for
a state that is always zero, and so a different approach is required to
capture the librational motion in a Fourier space.

To simplify the problem, in-plane libration is ignored and we will
focus on controlling the out-of-plane libration depicted in Fig. 3.
In-plane libration is not resonant with the periodic controller or the
orbital motion, because it evolves with frequency wy = +/3n, where
n is the mean motion of the satellite, and thus it does not grow very
quickly. The out-of-plane libration has frequency w, = 2n, which is
commensurate with the frequency of the orbital motion and the
controller, resulting in more rapid growth (or decay) over time. With
this justification for ignoring the in-plane libration in mind, we derive
a new state that captures only the out-of-plane libration (hereafter
simply called libration, unless otherwise stated).

A constraint in Fourier space must not contain any functions of a
fast time variable (i.e., trigonometric functions of v). Averaging
serves to eliminate dependence on this fast time variable, leaving
only variables changing slowly with time in the equations of motion.
To accomplish this, a new state is devised: the mean-square value of a
tether’s out-of-plane libration. Whether power is applied to the tether
or not, the libration mean square is proportional to the maximum
angle reached throughout the pendular cycle. For an unpowered
(inert) librating EDT, the mean-square value is exactly half of the
square of the libration magnitude ¢,, (i.e., ¢%, = ¢2,/2). This
relationship is approximate for a powered EDT as long as the
perturbation due to the electromagnetic torque is relatively small.
Deriving an expression that describes the librational mean-square
behavior provides a way to understand the behavior of the magnitude
of the librational motion over a long time. Thus, constraining the
mean-square trajectory for a given orbital maneuver is tantamount to
bounding the envelope that contains the librational motion of the
tether over long time durations.

Unfortunately, the librational equations of motion given in Egs. (3)
and (4) have no closed-form solution that will enable us to capture the
libration amplitude changes over long time scales. The good news,
however, is that assuming small libration angles, we may linearize
the equations of motion, thus decoupling the in- and out-of-plane
libration equations of motion. To start, we will ignore the aero-
dynamic torque and only consider the electrodynamic torque in the
libration controller model and write

Qq)e

$+dp=—

_ (m, — ml))/m

I, sin 1(k(T) cosv — h(T) sinv) ¥’ (v)u(T)
2mm

= gsini(kcosv — hsinv)

X (U + u, cOSV + uz sinv + u, cos 2v + us sin 2v) 5)

L~ Inertial Frame

Fig. 3 Rotating frame coordinates.
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where the independent variable has been changed to v so that
(") = d()/dv. This equation is expressed using a partial equinoctial
element set described in the previous section, where k = k/e and
h = h/e. Both k and h are order-1 quantities that are themselves
averages that vary slowly over a long time. Adopting the convention
established in [2,11], the nondimensional small parameter & is
defined as the ratio of the maximum electrodynamic torque to the
gravity gradient torque and corresponds to the powered part of
expansion:

(mZ - ml)ym

max electrodynamic torque
£ = B ~
2mmu

gravity gradient torque

(6)

Forauniform 1.5 A rms, 500 kg tether system in low Earth orbit, with
an upper end mass of 230 kg and a lower end mass of 220 kg, this
parameter is about 0.0026. The slow-time-scale variable T is a scaled
version of the clock time 7 and the true anomaly, related by the scaling
parameter ¢ such that

T—et=g %)
n

We have chosen the nondimensional scale factor here to be the torque
ratio defined in Eq. (6) for reasons that will soon be apparent. Only
small changes to the known periodic libration motion of the inert
tether over short time spans will occur as long as the electrodynamic
torque is small compared with the gravity gradient (i.e., ¢ < 1). In
transforming the controls from the short-time-scale domain to
Fourier space, we exchange a single control variable (current as a
function of a fast time variable) for five control variables (the five
Fourier coefficients in u(7) that are functions of a slow time
variable).? Expanding the right-hand side term in the differential
equation in Eq. (5) and through liberal use of trigonometric identities,
we determine an exact solution to the linearized equation:

¢(V7 T) = ¢0(U, T) + 8¢1 (U, ll(T))
=¢,,(T)cos2(v—v,) + esini(/EK - ﬁH) 8)

where

1
K(,u(T)) =%+§(u1 +%) cosv—{—%sinv—%vcos%}

U, . Uy .
+ —=vsin2v — —cos 3v — —=sin 3v

s
8 10 10

u u 1/(u . u
H(v,u(T)) =§3+€COSV—§(§—M1) 51nv—§2vcos2v

us . Us Uy .
+ 3 vsin2v + 10(:0531) 1Os1n3v
and ¢,,(T) is the initial amplitude of the librational motion, which is
considered constant over a single orbital period, but changes slowly
over time.

One restriction due to the linearization is that the second term on
the right-hand side of Eq. (8) must be less than order 1 (i.e., ev < 1).
Therefore, to ensure the accuracy of the solution, the duration is
limited to v < 1/¢ (note the explicit v terms present in K and H).
This is a reasonable assumption when we consider a small
electrodynamic torque due to nearly equal end masses and a uniform
current in the tether. For a scaled maximum electrodynamic torque of
& = 0.0026, this maximum allowable duration corresponds to about
60 orbital revolutions. Eventually, a long-duration optimal control
problem will be discretized into smaller intervals that are much
shorter than this limit so that this approximate solution is valid for
each subinterval. Linking the subintervals together, the long-term
maneuver will consist of states and Fourier coefficient controls that
are constant within each subinterval, but vary slowly over the course

SWe refer to the variable as a slow time variable, because variables
dependent on change slowly over long time scales. By contrast, the variables v
and ¢ are considered as fast time variables, because variables dependent on
these cycle on a short time scale (e.g., a single revolution).

of the whole trajectory. The first term on the right side of Eq. (8)
represents the homogeneous solution, indicating that a tether without
any electrodynamic torque would continually librate at twice the
orbital frequency. Perturbations come through the small electro-
dynamic torque of order ¢ imparted on the tether over a long time.
Whether these perturbations destabilize or stabilize the libration
depends on the slowly changing control terms contained in K and H.
A thorough derivation of periodic libration-angle solutions is
provided in [11] for an EDT with a steady dc current.

For an unpowered tether, or one in which the center of mass is
collocated with the center of force on the tether (thus, no Lorenz
torque, and so eu(7) = 0), or an equatorial orbit in which i = 0, the
solution to Eq. (8) is the homogeneous solution:

¢0(U7 T) = ¢»1(T) COS(Z(U - VO))

Presuming that the periodic control may be started at any time during
the libration cycle, we assume the peak of a libration cycle
corresponds with vy = 0, then

¢,(v,T) = ¢,,(T) cos2v

Using this model, the libration is controlled through the remaining
O(e) term in Eq. (8). Now we define the libration mean-square state
as

1

v+2m
D) == [T wE s ©

This state is always positive and is itself an average over a period
by definition. Furthermore, for short time intervals, such as a few
orbital periods, the libration amplitude change is negligible and the
relationship between the state z and the amplitude may be expressed
as

22 = 2¢5ns = ¢3,

Substituting Eq. (8) into Eq. (9), we write

D=0 / " e Ty

1 V21

5 [0 (€. T) + £, (5. w(T))[Pdé

T N

V421
o [ B 200,01 + e (10)

Because ¢, (v, T) and ¢, (v, u(T)) are both considered 27z-periodic in
v over a single period, the whole integrand in Eq. (10) is assumed to
be 27r-periodic. This assumption is valid because u(7) and ¢,,, (T) do
not change significantly over the short 2 interval; therefore, the
limits of the definite integral may be considered from 0 to 27 without
the loss of generality. Thus, the secular change in z due to the Lorenz
torque averaged over one period is

l 2
(=1 / 2+ 266,61 + 2By
27T 0

1 2w ~ ~
= —/ @2 + 2¢,,&sinicos2v(kK — hH)
2 0
+ &2sin2i(kK — hH)dv
Because the next step in the derivation will be to integrate, terms that
will average to zero after integration may be omitted, which yields

2«(T) =%K” $2dv +¢”’imii 7
+ (lguz - ﬁu3) sin2v]dv

sin*i 1

64 21

+ (1 cos 20— us sin2v)2dv + O(2v) (11)

evcos 2v[(huy — kus) cos2v

TJo

2 ~
/ £2V2[k(uz cos2v + u, sin2v)
0
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The first integral term in Eq. (11) is the inert tether libration mean-
square value. Secular changes enter the system through the
remaining terms that have an explicit dependence on v. Over a single
period, the change in z is very small, due to the scaling factor .
Recalling Eq. (7), we substitute the slow time variable T for ev,
consider it constant over the limits of the definite integral, and
remove it from the integrand. This slow time variable affects the
secular growth (or decay) of the z state only over large spans of time,
and so only the sinusoidal functions of v are averaged through
integration. Physically, the mean-squared value of libration changes
approximately linearly with T to first order over short time intervals.
The plot in Fig. 4 depicts the nearly linear small change in the z state
over one period. Substituting the slow time variable into Eq. (11) and
expanding yields

] 2
= [ g
2 0

T 1 2~ ~
+ n—(ﬁm sin i—/ (hu, — kus)cos?2v
4 21 0

~ ~ 1 2T26in%i 1 27 ~
~+ (kuy — hus) 3 sin 4\)] dv + nTstsz | [kz(ugcoszb)
+ u3sin®2v) + h” (u3cos?2v + ulsin?2v)
— 2h k upuz)dv + O(eT) 12)

Finally, we perform the integration with respect to true anomaly and
take the derivative with respect to the clock time for the desired
secular change in z over a long time scale. Assuming that the
averaged states a, ﬁ, IE, and i and control coefficients u, and us in
Eq. (12) vary slowly [i.e., d()/dT = O(e)], then the z state
derivative may be written

dz dz nsini  ~ ~

ik ev/2z 3 (huy — kus)

, n*sin?i
64

+e (3 + u?) — 4h kuyus)t + O(e31) 13)

where T = et. As expected, this derivative is small (O(¢)), and so the
libration mean-square state is nearly constant over short time
intervals. Although the second term on the right-hand side of the
derivative in Eq. (13) causes quadratic growth (or decay) of the z
state, it is of order £? and may only be significant when considering
larger time spans. This derivative will serve as a dynamic constraint
in subsequent optimal control problems to manage the magnitude of
libration while performing orbital maneuvers. Note that using this
model, the change in the libration mean-square state is achieved

Libration Squared Function and Envelope

L 2 4
O e
L 2 4
¢ \
rad® I 1
z 4
O 1 1 '} 1 1

0 1 2 3 9 5 <] 7

True Anomaly, rad

Fig. 4 Libration squared function, mean-square libration function and
envelope.

primarily through the u, and u; coefficients corresponding to the
periodic control resonant with the orbital frequency. This is because
in the satellite frame, the local magnetic field vector varies with the
orbital frequency. Therefore, resonating control current with this
frequency can dampen (or excite) libration.

III. Optimal Orbit Transfer Example

With the dynamics of the libration mean-square state in hand, it is
possible to optimally maneuver an EDT satellite to a new desired
orbit while simultaneously controlling the out-of-plane libration
(within the limits of the dynamic model). For this example, we
assume that the out-of-plane libration is much larger than the in-
plane libration (i.e., 8 < ¢). Furthermore, the eccentricity and the
maximum possible electrodynamic torque for a given tether design
are both small (i.e., ¢ < 1 and ¢ < 1).YBecause an EDT must orbit
low enough to take advantage of the Earth’s magnetic field, the orbit
is circular by necessity, and so the problem posed here is for a nearly
circular orbit. A 500 kg, 4 km EDT is used in this example with a
230 kg upper end body and a 220 kg lower end body with a maximum
rms current of 1.5 A. The optimal controls for this maneuver were
determined under three separate sets of conditions for comparison.
First, we assumed no drag when performing the maneuver with
libration control on. For the second run, we assumed no drag or
libration control to compare the results with the first run. Finally, we
included drag in the dynamic model and determined the optimal
maneuver with active libration damping turned on. These OCPs
were solved using DIDO, an optimization software package that
discretizes and solves general optimization problems using a pseudo-
spectral method [12,13]. A pseudospectral method was chosen
for its relatively high accuracy and short solve times using only a
few nodes.

A. Optimal Control Problem Formulation

It is desired to transfer the EDT from a parking orbit at 270 km
altitude with an eccentricity of 0.005 and a 30 deg inclination to a
280 km orbit with a 30.5 deg inclination in the minimum-time.
While performing this maneuver, the control current must drive the
maximum out-of-plane libration angle from 5 down to 3 deg. The
OCP is constructed as follows:

Minimize cost: J = t;
Subject to: dx/dt = f(x, u)
eo[x(To)] = [aq, e, io, 20]"
= [6648 km, 0.005, 30 deg, 0.0038 rad?]”
ex(Tp)] = [ay, if, z7]" =[6658 km, 30.5 deg, 0.0014 rad?]”
giu(T)] = 2, —2.25 <0 A? (14)

where x(T) ={[a, h,k,i,z]" represents the average states with
averaged dynamics f(x, u) described by Egs. (2) and (13). Initial
and final conditions are given in the form of event equality constraints
e, and e, and the initial eccentricity is given by e, = h2 + k2. The
path constraint g; bounds the rms current, which is determined by
Parseval’s theorem in the following form:

I = o [ui + 3003 + 13 + uf + u3)]

Because the rms current is proportional to the average power, this
constraint is equivalent to limiting the maximum average power
available for thrusting. Finally, states, controls, and time are bounded
by upper and lower limits (denoted using subscripts u and [,
respectively). These box constraints are written as

X, 2x(1)<x, w=ul)=<u, Ty=<Ty<T,, Tp=<T;=<Ty,
IThis method of averaging would work with eccentric orbits as well, but

one would need to expand about the difference from a reference eccentricity
instead of the eccentricity itself.
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where we have chosen the bounds to be
x, = [16,000 km, 0.4, 0.4, 80 deg, 0.0055 rad?]"
x; = [6638 km, —0.4, —0.4, 15 deg, 0 rad?]”
u, =[1,v2.V2.v2. V2"

u=-u, To=0

with initial orbital period P.

B. Results

Before using the optimization solver, the states and time were
scaled to span values of order 1 to make the problem numerically
well-conditioned ([8,14] each contain a full discussion on scaling for

numerical optimization). Solving this problem using DIDO for
the no-drag case yields an optimal control solution that drives the
libration magnitude to the final desired value while executing the
desired orbital maneuver in 222 revolutions. The control solution
without drag depicted in Fig. 5 indicates that the optimal strategy is to
initially apply a negative dc control current, indicated by u;, to
descend as shown in Fig. 6. Because drag has not yet been introduced
to the dynamic model, reducing the orbit size enhances inclination
changing capability, as shown by Eq. (2). The controller applies large
ac control components cycling at twice the orbital frequency to reach
the desired inclination (i.e., large u, and us components). The dc
component slowly transitions to positive flow by the end of the
trajectory, forcing the vehicle to climb to the final desired orbital
altitude. There is a small component of the periodic current allotted to
u, and uz, which drive the libration amplitude to the desired final
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state as expected in light of Eq. (13). The orbital states and libration
angle depicted in Fig. 6 were propagated using the exact equations of
motion given by the general perturbation equations of motion and
Eqgs. (3) and (4) with a stiff ordinary differential equation solver to
verify the accuracy of the dynamic model and the assumptions.
DIDO output of the averaged states is depicted by stars and the
propagated solution to the exact equations of motion using the
DIDO-derived controls is represented by the line. A discussion on
the propagation using stiff solvers and numerical round-off errors is
provided in [9].

For comparison, a similar constant eccentricity optimal maneuver
was executed without any restriction on the libration mean-square
state. The constraints in Eq. (14) were enforced with the following
exception and addition:

e¢x(Tp)] =lay,i;]" =[6658 km, 30.5 deg]"
gD =r +k —e=0

Path constraint g, ensures that the average eccentricity remains
constant throughout the maneuver. The resulting control profile
Fig. 7 and trajectory Fig. 8§ demonstrate that the maneuver is only
marginally quicker (221 revolutions), but the libration amplitude,
left uncontrolled, remains practically unchanged for this time
span. Given enough time, however, this amplitude can grow in a
thrusting tether, and so it is important to manage the libration while
maneuvering an EDT. This is especially true for a tether that is long,
carries a large control current, or has a large mass differential
between the upper and lower masses, resulting in a large electro-
dynamic torque when the EDT is active. The maneuver is executed
while avoiding large components of periodic current cycling at the
orbital frequency (i.e., u, and us3), which are large contributors to
eccentricity change.

When drag is included in the dynamic model [i.e., D # 0 in
Eq. (2)], the control profile is completely different from the no-
drag case. A climb-and-descend strategy is employed in which the
controls initially boost the satellite to take advantage of the lower
atmospheric density at higher altitudes, where power may be
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dedicated to increasing the orbit inclination without having to
compete with a large dc component that would be required to
compensate for drag. The controls are shown in Fig. 9, with the
resulting trajectory shown in Fig. 10, which includes the in-plane
libration history propagated using Eq. (3). With drag, this maneuver
takes three more days to complete than its no-drag counterpart,
requiring a total of 270 revolutions. Solving this large-time-scale
problem in the time domain would be a daunting task even for
the best available optimization programs, which would require an
absolute minimum of 4 nodes per revolution to capture the periodic
nature of this problem. The averaged state solution, on the other
hand, requires only a few nodes and is reminiscent of a Zermelo-type
solution, which provides the minimum-time path between two points
in a vector field.

C. Optimality
Although we do not demonstrate definitive optimality of the
control solution, we will show compliance with one transversality

condition necessary for optimality. Because there is no explicit time
dependence in the Lagrangian of the Hamiltonian of this optimal
control problem, we have H = 0. The Lagrangian of the Hamiltonian
is defined as

H=H+ .8 +pix+pju

where the Hamiltonian for this Mayer cost optimal control problem is
defined by H = ATf, and A represents the costate vector. The
covector functions associated with the path constraint, state-variable
box constraints and control-variable constraints are represented by
Mg, My, and u,, respectively. Furthermore, because the problem
posed here is a minimum-final-time problem, we have H (ty) = —1,
and so we have a condition that holds throughout the trajectory:
namely,

H(t) =—1 (15)

DIDO uses the covector mapping principle [15] to produce adjoints
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F

Fig. 11 Tether subject to atmospheric drag.

and the Hamiltonian as part of the solution, and we were able to verify
that the DIDO-derived Hamiltonian indeed satisfied the optimality
condition given in Eq. (15) throughout the trajectory within a
tolerance of 0.002. Several other solutions were generated using a
different number of collocation node points and slightly different
endpoint constraints, and the results were similar to those presented
here.

IV. Conclusions

Solving some periodic optimal control problems in Fourier space
using large time scales and time-averaged states has significant
advantages when the desire is to control the secular behavior of a state
over a long time, rather than the instantaneous behavior. Using this
method, complex optimal control problems normally requiring
thousands of optimization nodes may be transformed into simple
problems in Fourier space, requiring only a few dozen nodes. For
a continuously operating low-thrust satellite, a rapidly changing
periodic variable may be averaged out of the dynamics, leaving only
the dynamics of the slowly changing averaged variables. In the
case of electrodynamic tethers, including a state that captures the
magnitude of the out-of-plane tether libration provides a higher-
fidelity constraint model that enables more accurate optimal control
and also provides a mechanism to achieve stability. Because the
averaged equations of motion for orbit transfers assume a near nadir-
pointing tether, bounding the libration to small values is even more
critical. The results demonstrate that it is possible to control tether
libration while simultaneously maneuvering to a new orbit using
periodic control of the EDT current over a long time scale. This
method of controller design could assist engineers with design trade
studies offering not only feasible solutions, but quick and accurate
nearly optimal solutions. Implemented as a far horizon controller,
this method could be used to determine a long-term control strategy,
then uplink control coefficients to a satellite that would then feed
these commands to an instantaneous state controller.

Appendix: Derivation of Libration Equations of Motion

In developing an orbital maneuvering controller, it is important to
understand the libration behavior of tether motion that is subject to
electrodynamic and aerodynamic forces. A thorough derivation of
the libration equations of motion is presented in [2,9], but key results
are presented here for convenience. The tether is modeled as two end
masses connected by a straight tether in constant tension with a
uniform mass distribution (rigid-dumbbell model). The conservative
gravitational force plays a large role in the tether libration dynamics
and lends itself well to the development of equations of motion
using the Lagrangian method. The following derivation follows the
Lagrangian method using coordinates in the rotating frame shown in
Fig. 3. The inertial frame is centered at the center of the Earth. The
rotating frame is located at a position r with respect to the inertial
frame and is centered at the system center of mass (COM). It consists
of three mutually orthogonal unit vectors: €, in the zenith direction,
€, in the transverse direction, and €, completing the triad in the
direction perpendicular to the orbital plane. The vectors along the
straight tether extending from the COM to mass 1 and mass 2 are p
and p,, respectively.

Under the assumptions of the dumbbell model, the total kinetic
energy may be decomposed into two parts. One contribution is due to
the bulk translational motion of the system acting at the center of
mass, and another contribution is due to the motion about the COM.
The kinetic energy is therefore written as

T=lmi-i+ (0> + 1R -J- ) (A1)

where L is the tether length and m is the equivalent reduced mass,
which accounts for the mass distribution of the entire system and is

written [3,9]
.1 n m, n m, m,
TR\ T\ TS ) T

The total system mass m is composed of the lower end-body mass
m,, the upper end-body mass m,, and the tether mass m,. Dots here
indicate differentiation with respect to time [i.e., () = d()/dt].
Assuming that the tether does not stretch or go slack (i.e., L = 0),
then the second term on the right-hand side of Eq. (A1) represents
kinetic energy due to the rotational motion about the COM, where
mL?]J is the moment of inertia tensor (J = diag[0, 1, 1]) and € is
the angular velocity of the tether expressed using tether body
coordinates. Given the tether angular velocity ., = [fsing,
—¢, Ocos ¢, we write

@ =v+w.=[0+10)sing —¢ (B4 v)cosepl”
Therefore,
Q.J-Q=07J2 = ¢ + 2P0 + 1)’

Similarly, the potential energy may be expressed in two parts. One
contribution is due to the total system mass acting as a point mass in a
potential field, and a second contribution is the gravity gradient
potential due to the center of gravity offset from the COM. The
potential energy is approximated as
2
Vz—“—m—%ﬁamﬁ-ér)z— 1] (A2)
r 2r

where the tether orientation vector expressed in the rotating frame is
p =[cospcosd cospsinh sing].

For the rigid-dumbbell model presented here, the Lagrangian is
then

1 1 : .
L=T-V=-m?+ i’hLZW + cos2¢(6 + v)?]

2
-—
T 'u;ﬂ3 (3cos?¢cos?d — 1)
r r

The Lagrangian equations of motion for in- and out-of-plane
librations are, respectively,

d (JL JdL
ala) %o
mL? [cosztp(é + 1) + 2¢ cos ¢ sin p(6 + 1)

3u

+ = cos?¢ cos fsin 9] =0, (A3)

and
dL (BL) oL
0
dr \ 3¢ ¢ (Ad)
,;1[42{9; + cos ¢ sin ¢[(é +v)2 + i—gcosze}} =0,

where Q, and Q, are generalized forces affecting the in- and out-of-
plane librations, respectively, due to the electrodynamic Lorenz and
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aerodynamic drag forces. These generalized forces are derived as
follows.

Because the atmosphere is too thin at relevant orbital altitudes to
model as a fluid, we use a free-molecular flow model instead [16];
that is, the molecular mean free path is large compared with the
dimensions of the satellite. This force acts on both end masses and the
tether itself. In general, each end body has a different ballistic
coefficient and the system COM is not located at the center of the
tether. Furthermore, the atmospheric density varies exponentially
along the length of the tether; thus, the impact force of incoming
atmospheric particles varies along the wire, as shown in Fig. 11.
The generalized in-plane aerodynamic torque depends on the drag on
the lower body, F,, the drag on the upper body, F,, and the torque
about the COM due to the distributed drag along the tether, M, and
is given by

QQ(:ZFI'a_‘]'l+FZ'a_‘]'2 Mt@
a0 a0 a0

The torques due only to the end bodies are given by

8V1 0Q
—=F;-— X
1 90 1 90 P1
= %B]*,o(h)epl v2 4, L cos ¢(cos y cos O — sin y sin 6)
3V2 Q
F,-—=F,-— X
2 90 2 PY; P2

1
= —=B;p(h)e P>v*pu,,L cos ¢(— sin y sin 6 + cos y cos )

2
L A YL
:um_m 1 2 2 2

is a two-end-body reduced mass and where

where

1 m
D1 :W(mz +7’)Lcos¢cosé

and

1
pr=s (m, + %)Lcosq’)cos@
are factors that capture the adjusted drag at the lower and upper end-
body altitudes, respectively, with respect to the drag at a reference
altitude 4, given an atmospheric scale height #*. The flight-path
angle of the satellite in orbit is represented by y, and the ballistic
coefficients for the lower and upper end bodies are given by B} and
B}, respectively, defined by Eq. (1) using respective end-body
parameters. The torque due to the distributed nonuniform drag load
over the length of the tether is given by

Y] # 0
— = s X dF - — = p(h)v?E[e 2 (—p, — 1
Y PY: p(WV*E[e™(=p, — 1)

—ePr(p, — 1)] cos ¢(sin y sin 6 — cos y cos 0)

t

where

C .
dF = % p(h)V2dAY,

h*

E =d,[1 — cos’¢sin?(8 + y)]'/*(———
cos ¢ cos 6

)2
and d, represents the tether diameter. It is assumed that the airflow
velocity v, is nearly constant along the tether so that drag differential

is due only to the difference in atmospheric density. The coefficient of
drag for the tether wire, Cy,, is approximately 2.

Similarly, aerodynamic torque affecting the out-of-plane libration
is

v ov o
Qpe=Fy —++F 2+ M- —
¢ d¢ ¢
where
vy 1 ) . . .
F, % = —EBTp(h)eplv L sin ¢(sin y cos 6 + cos y sin )
8V2 1 % _ 5 . . )
F, % = Esz(h)e P2y, L sin ¢p(sin y cos 6 + cos y sin 6)
oK
M, - — = p(W)V?E[e " (—p, — 1
C o8 p(h)v E[e 2 (=py — 1)

— eP1(p; — 1)]sin ¢(sin y cos 8 + cos y sin 6)

The electrodynamic force F due to a current / traveling through a
straight wire with length vector L in a magnetic field B is given by

F=ILxB=ILpxB
expressed in the rotating frame as

B, cos¢sind — B, sin¢g
B, sin¢ — B, cos ¢cos 0
B, cos¢cos — B, cos¢sin b

F=IL

The Lorenz torque affecting the in-plane libration is

v 0
e:F-f.:F' — X
Qs 90 (ae p‘)

where

(my —my)L
ey—

Pi= M

represents the moment arm of the resultant Lorenz force at the center
of the tether with respect to the COM.
In the rotating frame, this torque is

Q. = ILp,(cos ¢ cos 0 sin @B, + sin ¢ cos ¢ sin OB, — cos’¢B,,)

Similarly, the Lorenz torque affecting the out-of-plane libration is

av 0
=F-—=F.-|—
Oy 2% (3¢Xp')

expressed in the rotating frame as
Q4 = ILp,(—sin 0B, 4 cos 0B,)

The total generalized forces (torques) are the sum of the torques due
to the electrodynamic and aerodynamic forces:

Q9 = Qé)a + QHe Q¢ = Q¢a + Qd)c

These terms may be substituted into Eqs. (A3) and (A4) to fully
describe the instantaneous librational motion of the EDT system.
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